Highlights From the 2014 Annual Scientific Meeting of the American Pain Society: Part 2
More on the latest research presented in Tampa
This
is Part 2 of a two-part report on selected talks from the 33rd Annual
Scientific Meeting of the American Pain Society (APS), held April 30-May
3, 2014 in Tampa, Florida, US. See also Part 1.
Inflammatory pain: novel mechanisms and mediators
Yuriy Usachev, University of Iowa, Iowa City, US, is
examining the role of the complement system, a key component of innate
immunity, in inflammatory pain. The idea that the complement system
could be important in pain signaling derives support from microarray
gene expression studies of pain in rodents in which several complement
genes surfaced as statistically significant “hits” (Lacroix-Fralish et al., 2011).
A notable recent study implicated C1q, a key molecule in the complement
cascade, in persistent inflammatory pain signaling in mice (see PRF related news story).
Usachev is interested in another complement molecule, the
proinflammatory complement fragment C5a. Previous research showed that
blocking the C5a receptor with an antagonist reduced mechanical
allodynia, edema, and skin cytokine levels in the mouse hindpaw incision
model (Clark et al., 2006).
At the meeting, Usachev reported unpublished data showing that complete
Freund’s adjuvant (CFA)-induced thermal hyperalgesia was significantly
reduced in C5a receptor knockout mice. Administration of C5a receptor
antagonists also decreased CFA-induced hyperalgesia. Meanwhile,
intraplantar injection of C5a itself resulted in thermal and mechanical
hyperalgesia that could be reversed by a TRPV1 antagonist or by TRPV1
deletion, suggesting that the ion channel may mediate the effects of C5a
on pain.
To more precisely delineate the signaling mechanisms by which C5a
contributes to inflammatory pain, Usachev has turned his focus to
macrophages. Macrophages in skin tissue express the C5a receptor, and
macrophage cell lines respond to C5a with calcium transients. Thermal
and mechanical hyperalgesia induced by C5a were eliminated in transgenic
mice lacking macrophages in the periphery, further implicating these
white blood cells in C5a-induced pain hypersensitivity.
Could macrophages communicate with neurons via C5a signaling to cause
pain, and if so, how? Here Usachev pointed to nerve growth factor
(NGF), which macrophages express. NGF levels in the skin are elevated
after C5a injection, and Usachev’s group has found that an
NGF-neutralizing antibody reduced C5a-induced thermal hyperalgesia, as
did an NGF receptor (Trk) inhibitor.
Based on these preliminary findings, Usachev is proposing a model in
which C5a binding to its receptor on macrophages increases NGF release
from macrophages, which then sensitizes TRPV1 on neurons, leading to
pain sensitivity. Usachev’s work thus provides further evidence that the
role of immune system components such as complement factors extends far
beyond the immune system into pain signaling, too.
David Clark, Stanford University School of Medicine,
Stanford, US, presented his group’s work on the role of epigenetic
mechanisms and mediators in inflammatory pain. This research has
important clinical relevance for postoperative pain, a significant
problem for many patients, especially for those on chronic opioid
treatment.
Enzymatic modification of histones, the proteins that package DNA, by
histone acetyltransferases (HATs) and histone deacetylases (HDACs) is
one key epigenetic mechanism that may contribute to pain states (for a
review, see Crow et al., 2013).
Clark previously reported that treatment of mice with the HDAC
inhibitor suberoylanilide hydroxamic acid (SAHA) worsened mechanical
hypersensitivity in that model, but did not affect thermal sensitivity (Sun et al., 2013).
Conversely, administration of the HAT inhibitor anacardic acid
ameliorated mechanical hypersensitivity, also without impacting thermal
sensitivity. Using an incision model of hyperalgesic priming, Clark also
found that treatment with the HAT inhibitor around the time of incision
partially blocked hyperalgesia when the animals were challenged two
weeks later with prostaglandin E2, whereas the HDAC inhibitor had no
effect.
The results suggested that incision increased histone acetylation
levels to cause pain, and further experiments looking at spinal cord
tissue after incision indeed revealed increased acetylation of an
important histone subtype, H3K9, in dorsal horn neurons; SAHA treatment
further increased levels of acetylated H3K9. Clark and colleagues
further found that incision increased chemokine signaling involving CXC
chemokine receptor 2 (CXCR2) and its ligand, CXCL1, a pathway known to
play a role in pain and inflammation; SAHA treatment further increased
that signaling. Together, the findings suggested that epigenetic
processes affecting CXCL1/CXCR2 signaling could be a target for
postoperative pain.
Clark’s latest work, published shortly after the meeting, shows that
hyperalgesia induced by chronic opioid use also involves epigenetic
alterations of CXCL1/CXCR2 signaling (Sun et al., 2014).
Again using the mouse hindpaw incision model, Clark showed that chronic
morphine administration, which produced mechanical allodynia and
thermal sensitivity pre-incision, and worsened incision-induced
mechanical allodynia, also increased expression of CXCL1/CXCR2 in the
wound area of the skin (dermal layer), though not in the spinal cord;
neutrophils in the wound area were the likely source of CXCL1. Chronic
morphine further increased the acetylation of H3K9 observed after
incision in dermal neutrophils infiltrating the wound area, and
acetylation of the CXCL1 promoter was also elevated. In addition, SAHA
had effects on CXCL1 levels in the skin similar to those seen with
chronic morphine administration.
The recent results suggest that opioids may regulate CXCL1 expression
and function via epigenetic processes in injured tissues. Compounds
targeting those processes could have value to dampen postoperative pain,
especially for patients taking chronic opioids.
Rheumatoid arthritis: a spinal player in post-inflammatory pain
Historically, pain in rheumatoid arthritis has been attributed to
inflammation, but many patients with the condition continue to
experience pain despite treatment with disease-modifying antirheumatic
drugs (DMARDs) that effectively control inflammation. In a plenary
lecture, Camilla Svensson, Karolinska Institute,
Stockholm, Sweden, focused on mechanisms that may drive persistent pain
in rheumatoid arthritis not only during inflammation but also after
inflammation has subsided. A particular highlight was discussion of her
work, published shortly after the meeting, on the role of extracellular
high mobility group box-1 (HMGB1) protein in arthritis pain (Agalave et al., 2014).
HMGB1 is a damage-associated molecular pattern (DAMP) molecule that
helps mediate the response to tissue damage and inflammation (Harris et al., 2012)
and has been linked to neuropathic pain, low back pain, bone
cancer-induced pain, diabetes-induced pain, and migraine in experimental
models (e.g., see Shibasaki et al., 2010).
Svensson’s path to HMGB1 stemmed from earlier work in which she and her
colleagues used a serum transfer arthritis model in mice where
mechanical hypersensitivity persists for several weeks after joint
inflammation resolves (so-called “late phase” hypersensitivity; Christianson et al., 2011).
The investigators found that spinal deficiency of the innate immune
receptor toll-like receptor 4 (TLR4), as well as intrathecal
administration of TLR4 antagonists, prevented the development of
persistent mechanical hypersensitivity in the animals. Because HMGB1 is
an endogenous TLR4 ligand, it seemed plausible that HMGB1 could play a
part in TLR4-mediated arthritis pain.
In her recently published research, Svensson used a collagen
antibody-induced arthritis (CAIA) model in mice to study HMGB1 function.
Immunohistochemistry findings revealed the expression of HMGB1 in
spinal cord dorsal horn neurons and glia of naïve animals, and that
HMGB1 levels were significantly increased in the spinal cord in CAIA
animals. Furthermore, blocking HMGB1 with an intrathecal neutralizing
monoclonal antibody or with a recombinant peptide known to block
extracellular HMGB1 activities reversed mechanical hypersensitivity
during both the inflammatory and late phase in the CAIA mice. The
investigators also discovered that only a particular, partially oxidized
isoform of HMGB1 (disulfide HMGB1) caused mechanical hypersensitivity
when administered intrathecally to naïve mice; it is only the disulfide
form that activates TLR4. Furthermore, while intrathecal disulfide HMGB1
caused mechanical hypersensitivity in wild-type mice, as well as in
animals missing immune receptors other than TLR4, TLR4 knockout mice did
not show the same response, indicating that TLR4 mediated HMGB1-induced
hypersensitivity. Finally, as activation of TLR4 is associated with
activation of glial cells and production of cytokines, the researchers
examined the effects of HMGB1 on glial and cytokine gene expression.
Only the disulfide form of HMGB1 induced expression of cytokine and
glial genes, further underscoring the importance of that particular
isoform in rheumatoid arthritis pain signaling.
Collectively, the results show that disulfide HMGB1 expressed in
spinal neurons and glial cells acts through TLR4 to enhance glial
activity and drive rheumatoid arthritis-induced pain, even in the
absence of inflammation, and that compounds that interfere with this
pathway could have salutary effects on pain. Svensson is now
investigating whether levels of HMGB1 (either alone or in complex with
other factors) are altered in cerebrospinal fluid from patients with
rheumatoid arthritis.
Next year’s APS Annual Scientific Meeting will take place in Palm Springs, California. For more information, see the APS website.
No comments:
Post a Comment