Opioids for neuropathic pain
Editorial Group: Cochrane Pain, Palliative and Supportive Care Group
This
is an updated version of the original Cochrane review published in
Issue 3, 2006, which included 23 trials. The use of opioids for
neuropathic pain remains controversial. Studies have been small, have
yielded equivocal results, and have not established the long-term
profile of benefits and risks for people with neuropathic pain.
To reassess the efficacy and safety of opioid agonists for the treatment of neuropathic pain.
We
searched the Cochrane Central Register of Controlled Trials (CENTRAL)
(to 24th October 2012), MEDLINE (1966 to 24th October 2012 ), and EMBASE
(1980 to 24th October 2012) for articles in any language, and reference
lists of reviews and retrieved articles.
We
included randomized controlled trials (RCTs) in which opioid agonists
were given to treat central or peripheral neuropathic pain of any
etiology. Pain was assessed using validated instruments, and adverse
events were reported. We excluded studies in which drugs other than
opioid agonists were combined with opioids or opioids were administered
epidurally or intrathecally.
Two
review authors independently extracted data and included demographic
variables, diagnoses, interventions, efficacy, and adverse effects.
Thirty-one
trials met our inclusion criteria, studying 10 different opioids: 23
studies from the original 2006 review and eight additional studies from
this updated review.
Seventeen studies (392 participants with neuropathic pain, average 22 participants per study) provided efficacy data for acute exposure to opioids over less than 24 hours. Sixteen reported pain outcomes, with contradictory results; 8/16 reported less pain with opioids than placebo, 2/16 reported that some but not all participants benefited, 5/16 reported no difference, and 1/16 reported equivocal results. Six studies with about 170 participants indicated that mean pain scores with opioid were about 15/100 points less than placebo.
Fourteen studies (845 participants, average 60 participants per study) were of intermediate duration lasting 12 weeks or less; most studies lasted less than six weeks. Most studies used imputation methods for participant withdrawal known to be associated with considerable bias; none used a method known not to be associated with bias. The evidence, therefore, derives from studies predominantly with features likely to overestimate treatment effects, i.e. small size, short duration, and potentially inadequate handling of dropouts. All demonstrated opioid efficacy for spontaneous neuropathic pain. Meta-analysis demonstrated at least 33% pain relief in 57% of participants receiving an opioid versus 34% of those receiving placebo. The overall point estimate of risk difference was 0.25 (95% confidence interval (CI) 0.13 to 0.37, P < 0.0001), translating to a number needed to treat for an additional beneficial outcome (NNTB) of 4.0 (95% CI 2.7 to 7.7). When the number of participants achieving at least 50% pain relief was analyzed, the overall point estimate of risk difference between opioids (47%) and placebo (30%) was 0.17 (95% CI 0.02 to 0.33, P = 0.03), translating to an NNTB of 5.9 (3.0 to 50.0). In the updated review, opioids did not demonstrate improvement in many aspects of emotional or physical functioning, as measured by various validated questionnaires. Constipation was the most common adverse event (34% opioid versus 9% placebo: number needed to treat for an additional harmful outcome (NNTH) 4.0; 95% CI 3.0 to 5.6), followed by drowsiness (29% opioid versus 14% placebo: NNTH 7.1; 95% CI 4.0 to 33.3), nausea (27% opioid versus 9% placebo: NNTH 6.3; 95% CI 4.0 to 12.5), dizziness (22% opioid versus 8% placebo: NNTH 7.1; 95% CI 5.6 to 10.0), and vomiting (12% opioid versus 4% placebo: NNTH 12.5; 95% CI 6.7 to 100.0). More participants withdrew from opioid treatment due to adverse events (13%) than from placebo (4%) (NNTH 12.5; 95% CI 8.3 to 25.0). Conversely, more participants receiving placebo withdrew due to lack of efficacy (12%) versus (2%) receiving opioids (NNTH -11.1; 95% CI -20.0 to -8.3).
Published Online: 29 AUG 2013
Assessed as up-to-date: 21 AUG 2013
Abstract
Background
Objectives
Search methods
Selection criteria
Data collection and analysis
Main results
Seventeen studies (392 participants with neuropathic pain, average 22 participants per study) provided efficacy data for acute exposure to opioids over less than 24 hours. Sixteen reported pain outcomes, with contradictory results; 8/16 reported less pain with opioids than placebo, 2/16 reported that some but not all participants benefited, 5/16 reported no difference, and 1/16 reported equivocal results. Six studies with about 170 participants indicated that mean pain scores with opioid were about 15/100 points less than placebo.
Fourteen studies (845 participants, average 60 participants per study) were of intermediate duration lasting 12 weeks or less; most studies lasted less than six weeks. Most studies used imputation methods for participant withdrawal known to be associated with considerable bias; none used a method known not to be associated with bias. The evidence, therefore, derives from studies predominantly with features likely to overestimate treatment effects, i.e. small size, short duration, and potentially inadequate handling of dropouts. All demonstrated opioid efficacy for spontaneous neuropathic pain. Meta-analysis demonstrated at least 33% pain relief in 57% of participants receiving an opioid versus 34% of those receiving placebo. The overall point estimate of risk difference was 0.25 (95% confidence interval (CI) 0.13 to 0.37, P < 0.0001), translating to a number needed to treat for an additional beneficial outcome (NNTB) of 4.0 (95% CI 2.7 to 7.7). When the number of participants achieving at least 50% pain relief was analyzed, the overall point estimate of risk difference between opioids (47%) and placebo (30%) was 0.17 (95% CI 0.02 to 0.33, P = 0.03), translating to an NNTB of 5.9 (3.0 to 50.0). In the updated review, opioids did not demonstrate improvement in many aspects of emotional or physical functioning, as measured by various validated questionnaires. Constipation was the most common adverse event (34% opioid versus 9% placebo: number needed to treat for an additional harmful outcome (NNTH) 4.0; 95% CI 3.0 to 5.6), followed by drowsiness (29% opioid versus 14% placebo: NNTH 7.1; 95% CI 4.0 to 33.3), nausea (27% opioid versus 9% placebo: NNTH 6.3; 95% CI 4.0 to 12.5), dizziness (22% opioid versus 8% placebo: NNTH 7.1; 95% CI 5.6 to 10.0), and vomiting (12% opioid versus 4% placebo: NNTH 12.5; 95% CI 6.7 to 100.0). More participants withdrew from opioid treatment due to adverse events (13%) than from placebo (4%) (NNTH 12.5; 95% CI 8.3 to 25.0). Conversely, more participants receiving placebo withdrew due to lack of efficacy (12%) versus (2%) receiving opioids (NNTH -11.1; 95% CI -20.0 to -8.3).
Authors' conclusions
Since
the last version of this review, new studies were found providing
additional information. Data were reanalyzed but the results did not
alter any of our previously published conclusions. Short-term studies
provide only equivocal evidence regarding the efficacy of opioids in
reducing the intensity of neuropathic pain. Intermediate-term studies
demonstrated significant efficacy of opioids over placebo, but these
results are likely to be subject to significant bias because of small
size, short duration, and potentially inadequate handling of dropouts.
Analgesic efficacy of opioids in chronic neuropathic pain is subject to
considerable uncertainty.
Reported adverse events of opioids were
common but not life-threatening.
Further randomized controlled trials
are needed to establish unbiased estimates of long-term efficacy, safety
(including addiction potential), and effects on quality of life.
No comments:
Post a Comment